Towards Many-Objective Optimization: Objective Analysis, Multi-Objective Optimization and Decision-Making
نویسندگان
چکیده
منابع مشابه
Multi-Objective Decision Making
Many real-world tasks require making decisions that involve multiple possibly conflicting objectives. To succeed in such tasks, intelligent systems need planning or learning algorithms that can e ciently find di↵erent ways of balancing the trade-o↵s that such objectives present. In this tutorial, we provide an introduction to decision-theoretic approaches to coping with multiple objectives. We ...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Towards Multi-Objective Optimization for UI Design
In recent years computational optimization has been applied to the problem of finding good designs for user interfaces with huge design spaces. There, designers are struggling to integrate many different objectives into the design process, such as ergonomics, learnability or performance. However, most computationally designed interfaces are optimized with respect to only one objective. In this ...
متن کاملDirected Multi-Objective Optimization
While evolutionary computing inspired approaches to multi-objective optimization have many advantages over conventional approaches; they generally do not explicitly exploit directional/gradient information. This can be inefficient if the underlying objectives are reasonably smooth, and this may limit the application of such approaches to real-world problems. This paper develops a local framewor...
متن کاملMany objective optimization and hypervolume based search
Multiobjective optimization problems occur frequently in practice where multiple objectives have to be optimized simultaneously and the goal is to find or approximate the set of Pareto-optimal solutions. Multiobjective evolutionary algorithms (MOEAs) are one type of randomized search heuristics that are well-suited for multiobjective optimization problems due to their ability of computing a set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2926493